Indian Journal of Urology Users online:3155  
IJU
Home Current Issue Ahead of print Editorial Board Archives Symposia Guidelines Subscriptions Login 
Print this page  Email this page Small font sizeDefault font sizeIncrease font size


 
  Table of Contents 
REVIEW ARTICLE
Year : 2017  |  Volume : 33  |  Issue : 1  |  Page : 19-25
 

Current perioperative management of pheochromocytomas


Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi, India

Date of Submission15-Mar-2016
Date of Acceptance21-Jun-2016
Date of Web Publication2-Jan-2017

Correspondence Address:
Rashmi Ramachandran
Department of Anaesthesiology, Pain Medicine and Critical Care, All India Institute of Medical Sciences, New Delhi
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0970-1591.194781

Rights and Permissions

 
   Abstract 

Neuroendocrine tumors which have the potential to secrete catecholamines are either associated with sympathetic adrenal (pheochromocytoma) or nonadrenal (paraganglioma) tissue. Surgical removal of these tumors is always indicated to cure and prevent cardiovascular and other organ system complications associated with catecholamine excess. Some of these tumors have malignant potential as well. The diagnosis, localization and anatomical delineation of these tumors involve measurement of catecholamines and their metabolic end products in plasma and urine, 123I-metaiodobenzylguanidine scintigraphy, computed tomography, and/or magnetic resonance imaging. Before surgical removal of the tumors, the optimization of blood pressure, as well as intravascular volume, is an important measure to avoid and suppress perioperative adverse hemodynamic events. Preoperative preparation includes the use of alpha-adrenergic antagonists, beta-adrenergic antagonists with or without other antihypertensive agents, fluid therapy as well as insulin therapy for hyperglycemia if required. Due attention should be given to type and dose of alpha-receptor antagonists to be used and the duration of this therapy to achieve an optimal level of preoperative “alpha-blockade.” Despite this preoperative preparation, many patients will have hypertensive crises intraoperatively which need to be promptly and carefully managed by the anesthesia team which requires intensive and advanced monitoring techniques. The most common complication after tumor removal is hypotension which may require fluid therapy and vasopressor support for a few hours. With advancement in surgical and anesthetic techniques, the incidence of severe morbidity and mortality associated with the surgery is low in high volume centers.



How to cite this article:
Ramachandran R, Rewari V. Current perioperative management of pheochromocytomas. Indian J Urol 2017;33:19-25

How to cite this URL:
Ramachandran R, Rewari V. Current perioperative management of pheochromocytomas. Indian J Urol [serial online] 2017 [cited 2023 Mar 25];33:19-25. Available from: https://www.indianjurol.com/text.asp?2017/33/1/19/194781



   Introduction Top


The 2004 WHO classification of endocrine tumors defines pheochromocytoma (PCC) as a catecholamine-producing intra-adrenal tumor arising from the chromaffin cells (intra-adrenal paraganglioma [PGL]). The related tumors of extra-adrenal sympathetic and parasympathetic paraganglia are classified as extra-adrenal PGLs.[1] The most important functional characteristics of the adrenal and extra-adrenal sympathetic tissue derived tumors is the production of various types of catecholamines and its related clinical attributes. In this review, the term PCC will be used for adrenal tumors, and the term PGL will be used for extra-adrenal tumors. PCCs form almost 80% to 85% of these tumors. The most common site of origin of PGLs is the organ of Zuckerkandl, the chromaffin tissue surrounding the inferior mesenteric artery and the bifurcation of aorta. Other sites of origin of PGL include infra-diaphragmatic para-aortic region, mediastinal thoracic sympathetic chain, and urinary bladder.[2] A few unusual sites reported are urethra, prostate, spermatic cord, genital tract, liver, and heart.[3],[4] The site of origin of the catecholamine-secreting tumors is important to delineate not just to aid in surgical dissection but also to prognosticate the malignant potential of the tumors which is different according to the site of origin.

The classic association of 10% of PCCs being malignant, 10% being bilateral, 10% being extra-adrenal (of which 10% are extra-abdominal), 10% in nonhypertensive patients and 10% being hereditary does not hold true for these tumors anymore. Many of these traditionally associated numbers have changed as more and more facts about them have been unveiled by newer research. With more and more germline mutations being recognized, up to 40% of cases of PCC and PGL are now known to be attributed to these genetic alterations.[5] Hereditary syndromes have higher proportion of bilateral PCCs as compared to sporadic occurrences. The malignant potential of both PCC and PGL is confirmed by their metastasis rather than their histological features. Depending on the underlying mutation and the definition of malignant disease, various reports mention estimated rates of malignancy between 5% and 26% and even higher when associated with germline mutations.[6],[7],[8],[9] Features suggestive of malignancy are seen 3–15 times more in PGL than in PCC.[10]

Surgery, wherever feasible, is the treatment of choice for these tumors and is curable for more than 90% of patients. The management of patients, however, requires a multi-disciplinary approach with involvement of endocrinologists, surgeons, and anesthesiologists. Improved awareness of the need for preoperative optimization of patients' signs and symptoms in decreasing the perioperative complications has led to well-established protocols in various institutes which cater to these patients. Considerable improvement in surgical and anesthetic techniques also has a major role in decreasing the morbidity and mortality historically associated with patients undergoing surgical removal of these tumors.

The following review details the current practices prevalent in the perioperative management of patients undergoing surgery for removal of PCC and PGL.


   Clinical Presentation and Diagnosis Top


PCC and PGLs are associated with a gamut of symptomatology. About 10–40% of these tumors are found incidentally and may not be related to any clinical symptoms. The classic symptomatology, i.e. paroxysms of hypertension, palpitation with diaphoresis is present in only 40% of the patients. Effects of long standing and severe hypertension can be seen as damage to the end organs especially heart, kidney, eyes, and central nervous system.[11],[12] Diabetes or deranged glucose metabolism may be present in up to 30–50% of the patients.[12],[13]

The clinical features in the patients are somewhat related to the type and amount of catecholamine secreted by the tumor as well. These tumors may secrete epinephrine (E), norepinephrine (NE), or dopamine in either a continuous manner (leading to sustained hypertension) or episodic pattern (leading to paroxysms of symptoms).

Biochemical tests are recommended and required for confirmation of the tumor. Within the chromaffin cells, NE and E are metabolized to normetanephrine and metanephrine. A rise in plasma metanephrines is thus indicative of increased tumoral production of catecholamines and forms the basis of the high sensitivity and specificity of this diagnostic test as compared to the measurement of parent catecholamine in the plasma which is dependent on their secretion from the tumor [Table 1].[14],[15],[16] Measurement of urinary fractionated metanephrines are also highly sensitive but offer low specificity.[17] Measurement of urinary and plasma vanillylmandelic acid (VMA) and catecholamine levels can also be used as a screening and diagnostic tests for these tumors. Measurement of urinary VMA is inexpensive and easy to perform by colorimetry and is, thus, useful as an initial screening test.[18]
Table 1: Sensitivity and specificity of various biochemical tests useful in patients with pheochromocytoma and paraganglioma

Click here to view


Imaging studies are important for tumor localization and lineation of its extent. They are also important in diagnosing multiple primary tumors and/or metastatic lesions in patients with various genetic disorders. The approach to surgical removal may depend considerably on the location, extent, and the association of the tumor with nearby anatomical structures. Imaging studies, especially functional studies are also useful adjuncts in confirming diagnosis of the tumor when biochemical investigations are ambiguous or not available in patients with clinical suspicion of the tumor. Computed tomography (CT), contrast enhanced CT, and magnetic resonance imaging are now routinely complemented by functional imaging using various radiotracers such as 123 I-metaiodobenzylguanidine (123 I-MIBG) and 111 In-DTPA-pentetreotide.[19],[20],[21]


   Preoperative Preparation Top


The most important factor that has drastically reduced the perioperative morbidity and mortality in these patients is the meticulous preoperative preparation that is undertaken.[22] The effect of catecholamines, NE and E, is brought about by their action on various sympathetic receptors, alpha and beta. Preoperative preparation or optimization encompasses negation of the alpha-1 mediated vasoconstriction and beta-1 mediated tachycardia and inotropy. Both these effects lead to hypertension. A few authors have questioned the need for obligatory preoperative antihypertensive therapy.[23] Most of the recent evidence, however, points toward decreased intra- and post-operative cardiovascular complications in patients who have received some medical therapy for control of signs and symptoms of catecholamine excess.[24],[25],[26] Preoperative alpha-blockade, as well as fluid and salt intake, is recommended by the Endocrine Society Clinical Guidelines Subcommittee for patients undergoing PCC and PGL resection.[27] The strict protocol based preoperative antihypertensive therapy, however, has recently been criticized, and use of a more flexible approach modified according to patient characteristics has been advocated.[28] The course of treatment is well-delineated in patients who are symptomatic, however, controversy still exists on need for antihypertensive therapy in asymptomatic patients.[29]

In symptomatic patients, the mainstay of “preparation” or “optimization” includes control of hypertension and vascular expansion.

Control of hypertension

Hypertension in these patients may be either paroxysmal with baseline normal blood pressure, baseline elevated blood pressure with intermittent paroxysms or persistently increased blood pressure. The primary cause of hypertension is alpha-receptor activation by the catecholamines. Alpha-receptor antagonists are, thus, the initial choice of drugs for control of hypertension. Other drugs, such as beta-receptor antagonists and calcium channel blockers, also have their place in the preoperative control of symptoms.

Alpha-receptor antagonists

Nonselective, irreversible, alpha-receptor antagonists

Phenoxybenzamine is the prototype nonselective and noncompetitive alpha-receptor antagonist drug being used for this specific indication. It has been used for alpha blockade in patients with PCC and PGL as far back as early 50's ever since the advantages of preoperative preparation in decreasing perioperative morbidity and mortality were recognized. Phenoxybenzamine is initiated at doses of 10 mg every 6–12 h and increased to 30–40 mg every 6 h to a maximum dose of 240 mg/day. It causes irreversible inactivation of alpha-receptors (both alpha-1 and alpha-2) by covalently bonding to the receptor molecule. Receptors need to be formed anew for reversal of the effect of phenoxybenzamine which may take up to 24–48 h after stopping the drug. The mechanism of action of phenoxybenzamine implies that the intraoperative hemodynamics are better controlled during tumor manipulation when patients are prepared with this drug while the incidence of postoperative hypotension requiring vasopressor infusion is usually more as compared to patients prepared with selective alpha-1antagonists. Studies, however, disproving [30],[31] and asserting [32],[33] both the assumptions exist. The drug crosses blood-brain barrier and leads to inactivation of centrally located alpha-1 and alpha-2 receptors and causes side effects such as headache and drowsiness. The other side-effects of phenoxybenzamine such as orthostatic hypotension, tachycardia, dizziness, and syncope are also more morbid and more profound than that seen in patients on selective alpha-1 receptor antagonists. This, along with the fact that phenoxybenzamine has now been withdrawn from a few countries, has now resulted in physicians favoring selective alpha-1 receptor antagonists for preoperative preparation in patients with PCC and PGL.[28]

Selective alpha-1 receptor antagonists

The selective alpha-1 receptor antagonist drugs available are prazosin, doxazosin, and terazosin. The pharmacodynamics properties of all three drugs are given in [Table 2]. Selective alpha-1antagonists preferentially act on the alpha-1 receptors and cause vasodilatation. Since the alpha-2 receptors are spared the presynaptic release of NE is not enhanced, and thus severe tachycardia is avoided. The vasodilatation due to apha-1 receptor antagonism will also lead to tachycardia but a lesser degree than that seen with phenoxybenzamine. The antagonism by this class of drugs is reversible and depending on the pharmacodynamics of these drugs prolonged hypotension after tumor isolation is usually not seen. The commonest side effects seen with this class of drugs are vertigo, dizziness, malaise, mild headache, and gastrointestinal symptoms such as nausea, gastralgia, diarrhea, or vomiting. Postural hypotension can be quite severe especially with the initial doses; hence, the drug is usually started at bedtime and in low doses. Syncope, tachycardia, palpitations, fatigue, drowsiness, rash, flushes are the rarely encountered side-effects.[34]
Table 2: Pharmacokinetic properties of alpha-receptor antagonists used for preoperative control of hypertension in patients with pheochromocytoma and paraganglioma

Click here to view


Prazosin is the most common used drug for this indication. The therapy with prazosin is usually initiated at 0.5–1 mg per dose every 4–6 h and titrated to a maximum of 20–24 mg/day. Many studies and reports have described good preoperative control of symptoms and adequate intraoperative alpha-blockade in patients prepared with prazosin preoperatively.[31],[32],[33]

Doxazosin is a longer acting drug and thus is usually required as once daily or twice daily dose. Despite being a longer acting drug refractory, hypotension after tumor removal requiring large amounts of intravenous fluids and vasopressor support is significantly less in patients pretreated with this drug as compared to patients who receive phenoxybenzamine.[35],[36] Doxazosin is initiated at the dose of 1–2 mg/day and titrated to control of blood pressure up to a maximum dose of 16 mg/day.

Terazosin is also initiated at a dose of 1 mg/day and can be increased up to a maximum of 20 mg/day depending on goals of blood pressure control. It has a shorter half-life than doxazosin. Preoperative control of blood pressure for patients with PCC has been described in a few reports and it may be a suitable alternative to more commonly used prazosin and doxazosin.[37]

Beta-receptor antagonists

Beta-blockers should never be used before initiation of alpha-blockade in patients with functional tumors as suppression of beta-1 mediated cardiac sympathetic drive before adequate arteriolar dilatation can lead to acute cardiac insufficiency and pulmonary edema.[38],[39] Added therapy with beta-receptor antagonists is required to counteract the tachycardia induced by nonselective alpha-blockade or due to vasodilatation induced increase in heart rate. Tachycardia is also seen commonly in patients with E secreting tumors. The presence of arrhythmias, features of myocardial ischemia and cardiomyopathy due to excessive catecholamine secretion also warrant their use. Cardioselective beta-antagonists are desirable and have less side-effect than nonselective beta-antagonists. Various beta-blockers used for this indication and their doses are given in [Table 3]. Labetalol has both α-and beta-receptor blocking activity and may be used in lieu of pure beta-antagonists (but never as an alternative to alpha-antagonists).[40] Labetalol reduces the uptake of 131 I-MIBG and needs to be stopped 2 weeks before 131 I-MIBG scintigraphy to avoid false negative test results.[41]
Table 3: Commonly used beta-blockers for preoperative control of hypertension and tachycardia in patients with pheochromocytoma and paraganglioma

Click here to view


Calcium channel blockers

Calcium channel blockers have been used as primary therapy for blood pressure control [42],[43] or as adjunct to alpha-antagonists [33],[44] for preoperative optimization in patients with PCC and PGL. They are especially useful in normotensive patients and patients with paroxysmal hypertension with no elevation in baseline blood pressure.[26] Amlodipine (5–20 mg/day), nicardipine (60–90 mg/day), nifedipine (30–90 mg/day), verapamil (180–540 mg/day), and diltiazem (90–240 mg/day) are the commonly used calcium channel blockers.[40],[44]

Vascular expansion

The catecholamines cause intense vasoconstriction through the alpha-1 receptors and initiation of alpha-blockade can lead to severe orthostatic hypotension. To counteract this hypotension patients are advised to increase fluid and salt intake. A patient may take 2–3 L of fluid (even more if acceptable to the patient) orally with 5–10 g of salt to increase the intravascular volume. If oral fluid and salt intake do not improve the orthostatic hypotension while the blood pressure of the patient still warrants antihypertensive therapy, crystalloids and colloids may be given intravenously. Serial hematocrit measurements give a guide to the effectiveness of volume expansion. Usually, a 5–10% fall in hematocrit is seen in well prepared patients. The fall in hematocrit is more a guide to the therapy rather than an end point for adequate volume expansion.

A patient may require 5–15 days of preoperative preparation with optimal alpha blocking drugs, increased oral fluids and salt intake and/or intravenous fluids before being “accepted” for surgery. The Endocrine Society Clinical Practice Guidelines also recommend a high-sodium diet and fluid intake to reverse catecholamine-induced blood volume contraction preoperatively and to prevent severe hypotension after tumor removal.[27] Monitoring and appropriate therapy for diabetes are also initiated in the preoperative period with oral hypoglycemic agents and/or insulin. Patients also need to undergo a battery of investigations to assess effect of catecholamine excess on end organs. The end organ most commonly affected is the heart, and due consideration should be paid to seek features of catecholamine or ischemia-induced cardiomyopathy. The goals of alpha-blockade have been arbitrarily defined by many authors [Table 4].[40],[45],[46] Clinically, however, these endpoints of alpha-blockade may not be clearly expressed due to the extremely variable features of the disease.
Table 4: Goals of preoperative alpha-blockade

Click here to view



   Anaesthetic Management Top


All patients will require general anesthesia with endotracheal intubation irrespective of the type of surgical approach. Epidural catheter is usually inserted in patients undergoing open surgical removal of tumor. Apart from the basic standards of monitoring as recommended by American Society of Anaesthesiologists, invasive blood pressure (IBP) monitoring is imperative in these patients. Normotensive patients and patients with incidentalomas also need IBP monitoring for immediate diagnosis and treatment of intraoperative hypertensive spikes. Hemodynamic instability, while customary in patients with overt PCC and PGLs, is not unusual in patients with adrenal incidentalomas either. In a retrospective study involving intraoperative hemodynamic behavior and postoperative outcome in patients with incidentalomas, almost half of the patients had hemodynamic instability during handling of the tumor and PCC was suspected in 26% of the patients.[47] A close watch on the blood pressure is thus warranted and mandatory in these patients.

A central venous access is also desirable in these patients. This should ideally be acquired in a large bore vein, internal jugular, axillary, or subclavian with a multi-lumen catheter. Central venous access helps in guiding the fluid therapy in these apparently vasoconstricted (explained above) patients as well as provides access to central vascular compartment for infusion of vasodilators and vasoconstrictors when required. Insertion of central venous catheter, however, may not be mandatory in all patients. Many authors have described the management of these patients without central venous catheterization as well.[33],[48] On the other hand, measurement of pulmonary capillary wedge pressure using  Swan-Ganz catheter More Detailss or other accurate methods to estimate cardiac filling pressures and function may be needed in patients with catecholamine or hypertension induced severe cardiomyopathy.[26],[49] Usefulness of noninvasive methods for cardiac output estimation and stroke volume variation to diagnose fluid deficit has also been revealed in patients with PCC recently.[50],[51] Fluid therapy is a vital but complex component of perioperative management in patients with PCC and PGL. While under-hydration will lead to severe hypotension after tumor resection over-hydration can lead to pulmonary edema and congestive heart failure in an already compromised heart.

The main complication anticipated during surgery is the hemodynamic instability, hypertension before tumor removal and hypotension after tumor isolation. Management of hypertension should be done with short acting and potent vasodilators. NE secretion will lead to intense hypertension with either bradycardia or tachycardia, the former being more common. Epinephrine secretion usually causes severe tachycardia but hypertension of lesser magnitude. Sodium nitroprusside and nitroglycerine are the two drugs which are commonly used for intraoperative control of hypertension and have established safety profile. Esmolol, a short-acting beta-receptor antagonist, is a useful adjunct to vasodilators for control of intraoperative hypertension and tachycardia. Many reports have tried to elucidate the factors which can affect the number and severity of these hypertensive episodes.[48],[52],[53] Anesthetic drugs,[23],[38] tumor size [52],[54] and site,[55] associated genetic syndrome,[56] plasma catecholamine levels,[52],[57] and type of surgical approach [54],[55],[58] may influence the intraoperative hemodynamic stability in these patients. Bleeding is another important concern especially during resection of PGL situated in the intra-aortocaval groove which may further confound the complex hemodynamic management of these patients.


   Postoperative Management Top


The postoperative management will usually require an intensive care or high dependency unit admission. Once the tumor is isolated the withdrawal of catecholamine effect will result in hypotension. Fluid loading along with vasopressor infusion is required to counteract the hypotension. The incidence of hypotension is variably described as 20–70% in various reports and may somewhat be dependent on the use of nature of preoperative alpha-antagonist and intraoperative hypotensive agents.[32] Vasopressor/s infusion is usually required for a short duration only although reports of refractory and prolonged vasopressor use in the postoperative period do exist. Sudden catecholamine withdrawal after tumor removal also leads to rebound hyperinsulinemia which along with already depleted glycogen stores can lead to severe hypoglycemia in the postoperative period. Hourly blood sugar monitoring, at least for the initial 12–24 h of the postoperative period, is mandatory after the surgery.


   Conclusion Top


Surgical removal of PCC and PGL alleviates the signs, symptoms and probable end organ damage due to catecholamine hypersecretion. Preoperative optimization has played an important role in decreasing the high incidence of perioperative morbidity and mortality historically associated with these surgical procedures. Alpha-receptors blockade, especially with selective alpha-1 receptor antagonists, is thus vital in these patients preoperatively. Adjunct antihypertensive therapy includes beta-antagonists and calcium channel blockers. Adequate vascular volume replacement with oral fluids and salt is essential to avoid exaggerated fall in blood pressure perioperatively. Intensive hemodynamic monitoring instituted intraoperatively may need to be continued in the postoperative period as well to tide over the initial period of hypotension after tumor removal.

Financial support and sponsorship:

Nil.

Conflicts of interest:

There are no conflicts of interest.

 
   References Top

1.
Pacak K, Eisenhofer G, Ahlman H, Bornstein SR, Gimenez-Roqueplo AP, Grossman AB, et al. Pheochromocytoma: Recommendations for clinical practice from the First International Symposium. October 2005. Nat Clin Pract Endocrinol Metab 2007;3:92-102.  Back to cited text no. 1
    
2.
Baez JC, Jagannathan JP, Krajewski K, O'Regan K, Zukotynski K, Kulke M, et al. Pheochromocytoma and paraganglioma: Imaging characteristics. Cancer Imaging 2012;12:153-62.  Back to cited text no. 2
    
3.
Pacak K, Koch CA, Wofford MR, Ayala AR. Overview of endocrine hypertension. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth, MA: MDText.com, Inc.; 2000. Available from: http://www.ncbi.nlm.nih.gov/books/NBK278980. [Last updated on 2009 Oct 21].  Back to cited text no. 3
    
4.
Liu S, Horne D, Freed DH, Sookhoo S, Strzelczyk J, Ravandi A, et al. Multimodality imaging of a cardiac pheochromocytoma. J Am Coll Cardiol 2014;63:e189.  Back to cited text no. 4
    
5.
Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: Learning from genetic heterogeneity. Nat Rev Cancer 2014;14:108-19.  Back to cited text no. 5
    
6.
Goldstein RE, O'Neill JA Jr., Holcomb GW 3rd, Morgan WM 3rd, Neblett WW 3rd, Oates JA, et al. Clinical experience over 48 years with pheochromocytoma. Ann Surg 1999;229:755-64.  Back to cited text no. 6
    
7.
Edström Elder E, Hjelm Skog AL, Höög A, Hamberger B. The management of benign and malignant pheochromocytoma and abdominal paraganglioma. Eur J Surg Oncol 2003;29:278-83.  Back to cited text no. 7
    
8.
Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Crespin M, Nau V, et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res 2003;63:5615-21.  Back to cited text no. 8
    
9.
Eisenhofer G, Bornstein SR, Brouwers FM, Cheung NK, Dahia PL, de Krijger RR, et al. Malignant pheochromocytoma: Current status and initiatives for future progress. Endocr Relat Cancer 2004;11:423-36.  Back to cited text no. 9
    
10.
Barakat MT, Meeran K, Bloom SR. Neuroendocrine tumours. Endocr Relat Cancer 2004;11:1-18.  Back to cited text no. 10
    
11.
Kudva YC, Young WF Jr., Thompson GB, Grant CS, van Heerden JA. Adrenal incidentaloma: An important component of the clinical presentation spectrum of benign sporadic adrenal pheochromocytoma. Endocrinologist 1999;9:77-80.  Back to cited text no. 11
    
12.
Baguet JP, Hammer L, Mazzuco TL, Chabre O, Mallion JM, Sturm N, et al. Circumstances of discovery of phaeochromocytoma: A retrospective study of 41 consecutive patients. Eur J Endocrinol 2004;150:681-6.  Back to cited text no. 12
    
13.
Pogorzelski R, Toutounchi S, Krajewska E, Fiszer P, Lykowski M, Zapala L, et al. The effect of surgical treatment of phaeochromocytoma on concomitant arterial hypertension and diabetes mellitus in a single-centre retrospective study. Cent European J Urol 2014;67:361-5.  Back to cited text no. 13
    
14.
Hsiao RJ, Parmer RJ, Takiyyuddin MA, O'Connor DT. Chromogranin A storage and secretion: Sensitivity and specificity for the diagnosis of pheochromocytoma. Medicine (Baltimore) 1991;70:33-45.  Back to cited text no. 14
    
15.
Kudva YC, Sawka AM, Young WF Jr. Clinical review 164: The laboratory diagnosis of adrenal pheochromocytoma: The Mayo Clinic experience. J Clin Endocrinol Metab 2003;88:4533-9.  Back to cited text no. 15
    
16.
Lenders JW, Pacak K, Walther MM, Linehan WM, Mannelli M, Friberg P, et al. Biochemical diagnosis of pheochromocytoma: Which test is best? JAMA 2002;287:1427-34.  Back to cited text no. 16
    
17.
Eisenhofer G. Screening for pheochromocytomas and paragangliomas. Curr Hypertens Rep 2012;14:130-7.  Back to cited text no. 17
    
18.
Witteles RM, Kaplan EL, Roizen MF. Sensitivity of diagnostic and localization tests for pheochromocytoma in clinical practice. Arch Intern Med 2000;160:2521-4.  Back to cited text no. 18
    
19.
Jalil ND, Pattou FN, Combemale F, Chapuis Y, Henry JF, Peix JL, et al. Effectiveness and limits of preoperative imaging studies for the localisation of pheochromocytomas and paragangliomas: A review of 282 cases. French Association of Surgery (AFC), and the French Association of Endocrine Surgeons (AFCE). Eur J Surg 1998;164:23-8.  Back to cited text no. 19
    
20.
Pacak K, Eisenhofer G, Goldstein DS. Functional imaging of endocrine tumors: Role of positron emission tomography. Endocr Rev 2004;25:568-80.  Back to cited text no. 20
    
21.
Timmers HJ, Taieb D, Pacak K. Current and future anatomical and functional imaging approaches to pheochromocytoma and paraganglioma. Horm Metab Res 2012;44:367-72.  Back to cited text no. 21
    
22.
Plouin PF, Duclos JM, Soppelsa F, Boublil G, Chatellier G. Factors associated with perioperative morbidity and mortality in patients with pheochromocytoma: Analysis of 165 operations at a single center. J Clin Endocrinol Metab 2001;86:1480-6.  Back to cited text no. 22
    
23.
Lentschener C, Gaujoux S, Tesniere A, Dousset B. Point of controversy: Perioperative care of patients undergoing pheochromocytoma removal-time for a reappraisal? Eur J Endocrinol 2011;165:365-73.  Back to cited text no. 23
    
24.
Tauzin-Fin P, Sesay M, Gosse P, Ballanger P. Effects of perioperative alpha1 block on haemodynamic control during laparoscopic surgery for phaeochromocytoma. Br J Anaesth 2004;92:512-7.  Back to cited text no. 24
    
25.
Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Phaeochromocytoma. Lancet 2005;366:665-75.  Back to cited text no. 25
    
26.
Kinney MA, Narr BJ, Warner MA. Perioperative management of pheochromocytoma. J Cardiothorac Vasc Anesth 2002;16:359-69.  Back to cited text no. 26
    
27.
Lenders JW, Duh QY, Eisenhofer G, Gimenez-Roqueplo AP, Grebe SK, Murad MH, et al. Pheochromocytoma and paraganglioma: An endocrine society clinical practice guideline. J Clin Endocrinol Metab 2014;99:1915-42.  Back to cited text no. 27
    
28.
James M. The impact of changes in drug availability for hemodynamic management in pheochromocytoma: Prêt-à-porter or tailor-made? Can J Anaesth 2015;62:1244-7.  Back to cited text no. 28
    
29.
Shao Y, Chen R, Shen ZJ, Teng Y, Huang P, Rui WB, et al. Preoperative alpha blockade for normotensive pheochromocytoma: Is it necessary? J Hypertens 2011;29:2429-32.  Back to cited text no. 29
    
30.
Kocak S, Aydintug S, Canakci N. Alpha blockade in preoperative preparation of patients with pheochromocytomas. Int Surg 2002;87:191-4.  Back to cited text no. 30
    
31.
Havlik RJ, Cahow CE, Kinder BK. Advances in the diagnosis and treatment of pheochromocytoma. Arch Surg 1988;123:626-30.  Back to cited text no. 31
    
32.
Agrawal R, Mishra SK, Bhatia E, Mishra A, Chand G, Agarwal G, et al. Prospective study to compare peri-operative hemodynamic alterations following preparation for pheochromocytoma surgery by phenoxybenzamine or prazosin. World J Surg 2014;38:716-23.  Back to cited text no. 32
    
33.
Weingarten TN, Cata JP, O'Hara JF, Prybilla DJ, Pike TL, Thompson GB, et al. Comparison of two preoperative medical management strategies for laparoscopic resection of pheochromocytoma. Urology 2010;76:508.e6-11.  Back to cited text no. 33
    
34.
Desiniotis A, Kyprianou N. Advances in the design and synthesis of prazosin derivatives over the last ten years. Expert Opin Ther Targets 2011;15:1405-18.  Back to cited text no. 34
    
35.
Prys-Roberts C, Farndon JR. Efficacy and safety of doxazosin for perioperative management of patients with pheochromocytoma. World J Surg 2002;26:1037-42.  Back to cited text no. 35
    
36.
Miura Y, Yoshinaga K. Doxazosin: A newly developed, selective alpha 1-inhibitor in the management of patients with pheochromocytoma. Am Heart J 1988;116(6 Pt 2):1785-9.  Back to cited text no. 36
    
37.
Bongon J, Oliva R, Almelor L, Lantion-Ang FL. Terazosin as first line preoperative blockade in Filipino patients diagnosed with pheochromocytoma. J ASEAN Fed Endocr Soc 2015;30:35.  Back to cited text no. 37
    
38.
Prys-Roberts C. Phaeochromocytoma – Recent progress in its management. Br J Anaesth 2000;85:44-57.  Back to cited text no. 38
    
39.
Sibal L, Jovanovic A, Agarwal SC, Peaston RT, James RA, Lennard TW, et al. Phaeochromocytomas presenting as acute crises after beta blockade therapy. Clin Endocrinol 2006;65:186-90.  Back to cited text no. 39
    
40.
Pacak K. Preoperative management of the pheochromocytoma patient. J Clin Endocrinol Metab 2007;92:4069-79.  Back to cited text no. 40
    
41.
Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992;13:513-21.  Back to cited text no. 41
    
42.
Ulchaker JC, Goldfarb DA, Bravo EL, Novick AC. Successful outcomes in pheochromocytoma surgery in the modern era. J Urol 1999;161:764-7.  Back to cited text no. 42
    
43.
Lebuffe G, Dosseh ED, Tek G, Tytgat H, Moreno S, Tavernier B, et al. The effect of calcium channel blockers on outcome following the surgical treatment of phaeochromocytomas and paragangliomas. Anaesthesia 2005;60:439-44.  Back to cited text no. 43
    
44.
Sprung J, O'Hara JF Jr., Gill IS, Abdelmalak B, Sarnaik A, Bravo EL. Anesthetic aspects of laparoscopic and open adrenalectomy for pheochromocytoma. Urology 2000;55:339-43.  Back to cited text no. 44
    
45.
Kohl BA, Schwartz S. How to manage perioperative endocrine insufficiency. Anesthesiol Clin 2010;28:139-55.  Back to cited text no. 45
    
46.
Witteles RM, Kaplan EL, Roizen MF. Safe and cost-effective preoperative preparation of patients with pheochromocytoma. Anesth Analg 2000;91:302-4.  Back to cited text no. 46
    
47.
Hariskov S, Schumann R. Intraoperative management of patients with incidental catecholamine producing tumors: A literature review and analysis. J Anaesthesiol Clin Pharmacol 2013;29:41-6.  Back to cited text no. 47
[PUBMED]  Medknow Journal  
48.
Kinney MA, Warner ME, vanHeerden JA, Horlocker TT, Young WF Jr., Schroeder DR, et al. Perianesthetic risks and outcomes of pheochromocytoma and paraganglioma resection. Anesth Analg 2000;91:1118-23.  Back to cited text no. 48
    
49.
Kizer JR, Koniaris LS, Edelman JD, St John Sutton MG. Pheochromocytoma crisis, cardiomyopathy, and hemodynamic collapse. Chest 2000;118:1221-3.  Back to cited text no. 49
    
50.
Mallat J, Pironkov A, Destandau MS, Tavernier B. Systolic pressure variation (Deltadown) can guide fluid therapy during pheochromocytoma surgery. Can J Anaesth 2003;50:998-1003.  Back to cited text no. 50
    
51.
Matsuda Y, Kawate H, Shimada S, Matsuzaki C, Nagata H, Adachi M, et al. Perioperative sequential monitoring of hemodynamic parameters in patients with pheochromocytoma using the Non-Invasive Cardiac System (NICaS). Endocr J 2014;61:571-5.  Back to cited text no. 51
    
52.
Tatsugami K, Eto M, Hamaguchi M, Yokomizo A, Harano M, Naito S. What affects the results of a laparoscopic adrenalectomy for pheochromocytoma? Evaluation with respect to intraoperative blood pressure and state of tumor. J Endourol 2009;23:101-5.  Back to cited text no. 52
    
53.
Namekawa T, Utsumi T, Kawamura K, Kamiya N, Imamoto T, Takiguchi T, et al. Clinical predictors of prolonged postresection hypotension after laparoscopic adrenalectomy for pheochromocytoma. Surgery 2016;159:763-70.  Back to cited text no. 53
    
54.
Wang W, Li P, Wang Y, Wang Y, Ma Z, Wang G, et al. Effectiveness and safety of laparoscopic adrenalectomy of large pheochromocytoma: A prospective, nonrandomized, controlled study. Am J Surg 2015;210:230-5.  Back to cited text no. 54
    
55.
Hattori S, Miyajima A, Hirasawa Y, Kikuchi E, Kurihara I, Miyashita K, et al. Surgical outcome of laparoscopic surgery, including laparoendoscopic single-site surgery, for retroperitoneal paraganglioma compared with adrenal pheochromocytoma. J Endourol 2014;28:686-92.  Back to cited text no. 55
    
56.
Scholten A, Vriens MR, Cromheecke GJ, Borel Rinkes IH, Valk GD. Hemodynamic instability during resection of pheochromocytoma in MEN versus non-MEN patients. Eur J Endocrinol 2011;165:91-6.  Back to cited text no. 56
    
57.
Bénay CE, Tahiri M, Lee L, Theodosopoulos E, Madani A, Feldman LS, et al. Selective strategy for intensive monitoring after pheochromocytoma resection. Surgery 2016;159:275-82.  Back to cited text no. 57
    
58.
Inabnet WB, Pitre J, Bernard D, Chapuis Y. Comparison of the hemodynamic parameters of open and laparoscopic adrenalectomy for pheochromocytoma. World J Surg 2000;24:574-8.  Back to cited text no. 58
    



 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Laparoscopic adrenalectomy of pheochromocytoma following management of severe aortic stenosis with transcatheter aortic valve replacement under monitored anesthesia care sedation: a case report
Leon Yang, Lauren Hennis, Kevin Patel, Michael A. Saccocci
BMC Anesthesiology. 2023; 23(1)
[Pubmed] | [DOI]
2 Predictive Factors for Catecholamine-Induced Cardiomyopathy in Patients with Pheochromocytoma and Paraganglioma
Yi Wang, Xuerong Yu, Yuguang Huang
Frontiers in Endocrinology. 2022; 13
[Pubmed] | [DOI]
3 A Comprehensive Approach to Managing Methamphetamine-Associated Cardiomyopathy
Michael Osekowski, Adam Trytell, Andre La Gerche, David Prior, Andrew MacIsaac, Elizabeth D. Paratz
American Journal of Cardiovascular Drugs. 2022;
[Pubmed] | [DOI]
4 Pheochromocytoma: A Case Report
Eulália Antunes, Joana Lopes, Isabel Silva, Vera Fernandes
Cureus. 2022;
[Pubmed] | [DOI]
5 Case Report: Pheochromocytoma in a 59-Year-Old Woman Presenting With Hypotension
Hao-Yu Wu, Tian-Jiao Gao, Yi-Wei Cao, Lei Liang
Frontiers in Cardiovascular Medicine. 2021; 8
[Pubmed] | [DOI]
6 Prevention and Management of Hormonal Crisis during Theragnosis with LU-DOTA-TATE in Neuroendocrine Tumors. A Systematic Review and Approach Proposal
Maria Isabel del Olmo-García, Maria Angustias Muros, Martín López-de-la-Torre, Marc Agudelo, Pilar Bello, Jose M. Soriano, Juan-Francisco Merino-Torres
Journal of Clinical Medicine. 2020; 9(7): 2203
[Pubmed] | [DOI]
7 Perioperative management of pheocromocytoma/ paraganglioma: a comprehensive review
Alejandro Román-González, Huber Padilla-Zambrano, Luis Felipe Vásquez Jimenez
Colombian Journal of Anesthesiology. 2020; 49(3)
[Pubmed] | [DOI]



 

Top
Print this article  Email this article
 

    

 
   Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Article in PDF (362 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  


    Abstract
   Introduction
    Clinical Present...
    Preoperative Pre...
    Anaesthetic Mana...
    Postoperative Ma...
   Conclusion
    References
    Article Tables

 Article Access Statistics
    Viewed18021    
    Printed344    
    Emailed0    
    PDF Downloaded768    
    Comments [Add]    
    Cited by others 7    

Recommend this journal

Fosfocin